	is: [9 Jan 2020 II]
	stored per unit volume is 1:4, the ratio of their diameters
	ceiling under the same load. If the ratio of their energy
22.	Two steel wires having same length are suspended from a

is: [9 Jan 2020 II (a) $\sqrt{2}:1$ (b) 1:2 (c) 2:1 (d) 1: $\sqrt{2}$ (a) If force F acts along the length L of the wire of crosssection A, then energy stored in unit volume of wire is given by

Energy density = $\frac{1}{2}$ stress × strain

If u_1 and u_2 are the densities of two wires, then

 $\frac{u_1}{u_2} = \left(\frac{d_2}{d_1}\right)^4 \Rightarrow \frac{d_1}{d_2} = (4)^{1/4} \Rightarrow \frac{d_1}{d_2} = \sqrt{2}:1$

 $=\frac{1}{2} \times \frac{F}{4} \times \frac{F}{4V}$ (: stress $=\frac{F}{4}$ and strain $=\frac{X}{4Y}$)

 $= \frac{1}{2} \frac{F^2}{4^2 V} = \frac{1}{2} \frac{F^2 \times 16}{(\pi d^2)^2 V} = \frac{1}{2} \frac{F^2 \times 16}{\pi d^4 V}$